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1  DEVELOPMENT OF POWER ELECTRONICS FOR A 0.2KW-CLASS ION THRUSTER

Luis R. Piñero* and Michael J. Patterson† Glen E. Bowers**

National Aeronautics and Space Administration Gilcrest Electric
Lewis Research Center Brook Park, Ohio

Cleveland, Ohio

Abstract

Applications that might benefit from low power ion
propuls ion sys tems include Ear th-orbi t
magnetospheric mapping satellite constellations, low
Earth-orbit satellites, geosynchronous Earth-orbit
satellite north-south stationkeeping, and asteroid
orbiters.  These spacecraft are likely to have masses
on the order of 50 to 500 kg with up to 0.5 kW of
electrical power available.  A power processing unit
for a 0.2 kW-class ion thruster is currently under
development for these applications.  The first step in
this effort is the development and testing of a 0.24
kW beam power supply.  The design incorporates a
20 kHz full bridge topology with multiple
secondaries connected in series to obtain outputs of
up to 1200 VDC.  A current-mode control pulse width
modulation circuit built using discrete components
was selected for this application.  An input voltage of
28 ± 4 V DC was assumed, since the small spacecraft
for which this system is targeted are anticipated to
have unregulated low voltage busses.  Efficiencies in
excess of 91 percent were obtained at maximum
output power.  The total mass of the breadboard was
less than 1.0 kg and the component mass was 0.53
kg.  It is anticipated that a complete flight power
processor could weigh about 2.0 kg.

Introduction

Ion propulsion systems have the advantage of high
specific impulse when compared to chemical and
other electric propulsion systems.  This can lead to
reductions in launch vehicle class, increased payload
mass fraction, and/or spacecraft life.1  Currently, a
throttleable 0.5 - 2.3 kW xenon ion propulsion system
is being developed by the NASA Solar Electric
Propulsion Technology Application Readiness
(NSTAR) program for planetary spacecraft
applications.  This system         includes a 30-cm
thruster, xenon feed system (XFS), a power
processing unit (PPU), and a data control and
interface unit (DCIU) which will be used as primary 

propulsion on the New Millennium Deep-Space 1
mission to be launched in July 1998.2  

There is also a potential need for high specific
impulse propulsion for small spacecraft.
Applications that might benefit from this technology
include Earth-orbit magnetospheric mapping satellite
constellations, low Earth-orbit  satelli tes,
geosynchronous Earth-orbit (GEO) satellite north-
south stationkeeping, and asteroid orbiters using
spacecraft of 50 to 500 kg and within the order of 0.5
kW.1  Some inherent problems of using electric
propulsion with small spacecraft include cost,
limited power, volume, and thermal control capacity.
This makes reduced parts count, simplicity, and
high efficiency critical requirements for the
implementation of this technology.  

Technology for a 0.2 kW-class ion thruster is
currently being evaluated under NASA’s On-Board
Propulsion Program.  This design builds on the
NSTAR 30-cm thruster, incorporating features such
as a ring-cusp magnetic circuit, partial-conic
discharge chamber, and nonferromagnetic materials.3

In addition to the thruster, a PPU is being developed
for the low power ion propulsion system.  Simplicity
and minimum mass and volume with reasonable
efficiency are the major design drivers.  The
breadboard will supply the six electrical outputs
required by the ion thruster up to a total of 0.3 kW
using a nominal input voltage of 28 ± 4 V DC.  The
beam power supply processes 66 to 81 percent of the
total thruster power, which ranges from 0.08 to 0.30
kW.  It also supplies high voltage for ion
acceleration making it the most critical component
in the PPU. 

This paper documents the design process and
performance characteristics of the beam supply for
the PPU.  Also, it presents the results of resistive
load tests and information on the design approach to
be used for the other power supplies required for the
system.

* Electrical Engineer, On-Board Propulsion Branch
† Aerospace Engineer, On-Board Propulsion Branch, Member AIAA
** Electronic Systems Mechanic
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Design Considerations

Spacecraft / PPU Interface

A number of assumptions regarding spacecraft
interface requirements were made to initiate the
design process.  First, a nominal input voltage of 28
± 4 V DC was used because typical small spacecraft
are anticipated to have unregulated low voltage
power busses.  Second, input-output isolation was
desired for proper engine operation and to conform to
anticipated single point grounding schemes.  Finally,
mass, volume, simplicity, and efficiency were
chosen as design drivers.

Thruster / PPU Interface

Figure 1 shows a block diagram of the low power ion
thruster system.  The thruster requires six electrical
outputs for proper operation.  These outputs supply
cathode heater, discharge, neutralizer heater, and
neutralizer keeper currents and beam and accelerator
voltages.  The cathode and neutralizer heaters are
used to raise the discharge and neutralizer cathode to
emission temperature prior to ignition.  The
resistance of these heaters typically varies from 0.3
to 1.7 Ω as their temperature rises, therefore, a
constant current source is necessary to control inrush
currents.  The main discharge and neutralizer
cathodes emit electrons  that maintain plasma
discharges, therefore, constant current sources are
used to avoid instabilities.  Xenon gas is ionized
inside the discharge chamber and two very closely
spaced grids, known as screen and accelerator grids,
accelerate them electrostatically.  Constant voltage
sources are required to provide grid potentials.  Then,
the neutralizer cathode provides an electrical path
for the electrons created in the discharge chamber,
so they can neutralize the ions outside the engine.
The output specifications for all the power supplies
in the PPU are shown in Table 1.  

Grid-to-grid faults can occur due to the close
proximity of the grids and the high potential between
them.  Therefore, both beam and accelerator supplies
must include short circuit protection to prevent
damage during these faults.  A fault correction circuit
is required to detect faults and immediately
sequence the power supplies.  The sequencing of
power supplies, known as a “recycle”, extinguishes
the fault to avoid damage to the thruster, and then,
restore steady-state conditions.  The requirements to
complete a recycle has been documented elsewhere
(ref. 4).

PPU Design

Beam  Supply

Topology
Topology selection for the beam supply is critical for
the overall efficiency of the PPU.  Table 1 shows
that it processes 66 to 81 percent of the total power
to the thruster.  For this reason, a full bridge topology
was chosen because it allows the use of lower
voltage switching devices and requires a simpler
transformer than other switching topologies.  It also
allows the use of soft switching techniques to
maximize efficiency.5,6  A switching scheme that
alternately switches the two top transistors at 50
percent duty cycle and pulse width modulates the
two bottom diagonal transistors was implemented. A
low inductance power stage, using MOSFET
switching devices, was build to reduce switching
transients.7,8  A switching frequency of 20 kHz was
chosen to reduce switching losses, core losses, and
the mass of the magnetic components.  A photograph
and a schematic of the breadboard beam supply are
shown in Figures 2 and 3, respectively.

Transformer
The power transformer was wound on an EC-type
core made of 3C85 material.  Ferrite was chosen due
to its high efficiency and lower density than tape
wound cores.  The primary winding consisted of
multiple strands of 26 AWG wire sized to reduce
skin effect losses and minimize conduction losses.  A
total step-up ratio of 51:1 was required to obtain an
output voltage of 1200 VD C at minimum input
voltage.  Therefore, the number of primary turns was
minimized to reduce the total amount of turns.  Also,
winding techniques which reduce leakage inductance
and interwinding capacitance were used.  The
secondary consists of four separate windings, each
one producing up to 400 VDC for the beam output.
This arrangement reduces the voltage rating required
for the output rectifier diodes.  The beam output is
obtained by connecting the four secondaries in series.

PWM Control
Peak current-mode control was implemented with the
beam supply because of its excellent regulation,
current limit, and short circuit protection
characteristics over voltage-mode control.  The pulse
width modulation (PWM) circuit was implemented
using discrete components to avoid noise
susceptibility problems associated with some current-
mode PWM controller integrated circuits (ICs).  This
circuit  includes  cycle-by-cycle current  limit on the 
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primary current for short circuit protection and soft
start capability.

Physical Characteristics
Minimizing the mass and size of the PPU is a
critical design requirement.  The beam supply has a
component mass of 0.53 kg resulting in a component
specific mass of 2.2 kg/kW.  The heaviest component
is the power transformer with a weight of 0.175 kg.
The total weight of the breadboard is 1.1 kg.  From
these numbers it is anticipated that a flight version of
a complete PPU could weigh as low as 2.0 kg.

Additional Circuitry

Command and Telemetry Circuit
Control and sequencing of the power supplies can be
accomplished in several ways.  These include state
machines  and sof tware  dr iven micro-
controllers/micro-processors.  To maintain simplicity,
a state machine was chosen for this design.  This
state machine can be implemented using discrete
components or field programmable gate arrays
(FPGAs).

The design of the command and telemetry circuit is
in progress.  Commands will be simplified to a two
bit command word, which allows up to four possible
states.  These states are standby, cathode
conditioning, and run with up to two setpoints for the
thruster operation.  The cathode conditioning
command is used the first time the thruster is
operated after being exposed to atmosphere.  This
command initiates a process that removes water and
other contaminants from the cathode inserts.  The run
command will perform the complete startup
sequence for the thruster.  This consists of heating
the cathodes, starting their discharges, and applying
high voltage.  If necessary, states for additional
setpoints could be implemented by adding bits to the
command word.  Telemetry consists of only one bit
of information that will indicate that a particular
parameter is within normal, pre-defined limits.  For
thrust calculation purposes, the beam current
telemetry has a 12 bit resolution.

Recycle Circuit
An independent circuit monitors and detects recycle
events.  The same design used for the NSTAR
breadboard power processors was implemented in the
low power design.9,10,11   After an overcurrent is
detected on the beam supply, the beam and
accelerator supplies are turned off to extinguish the
fault.  Also, the discharge current is reduced to
minimize the ion density inside the discharge
chamber  and  avoid  starting  another  recycle  when 

high voltage is reapplied.  Then, the beam and
accelerator supplies are turned on.  Finally, the
discharge current is restored to nominal value.

Power Supplies
The accelerator, discharge, neutralizer keeper, and
heater supplies required for this application process a
small fraction of the total power to the engine.  As
shown in Table 1, their respective maximum outputs
are 0.3, 56, 2, and 27 W.  A commercially available
switching voltage regulator will be used for this
application.  This IC includes the control and power
functions for an isolated or non-isolated single
transistor topology.  With the addition of a power
transformer, an output filter, and a minimum number
of external components, a complete power supply
can be built with current-mode control, current limit,
soft start, undervoltage lockout, and thermal
shutdown features.  Since isolation is required for this
application, a flyback topology was chosen for the
accelerator supply because of its advantages at
higher output voltages.  A forward topology was
chosen for the other supplies because of its
advantages at higher output currents.5,6

Test Procedure

The beam supply was characterized using a resistive
load at power levels between 0.05 and 0.24 kW.
Digital multimeters were used to measure input and
output voltages and currents.  Efficiency was defined
as the output power divided by the input power,
including any housekeeping power.  At each setpoint,
line regulation was tested by sweeping the input
voltage from 24 to 32 VDC and load regulation was
tested by sweeping the load resistance over the
operating range of the power supply.  Regulation was
defined as the maximum minus the minimum output
divided by the setpoint.  Finally, the output of the
power supply was mechanically shorted at each
power level to demonstrate short circuit fault
survivability.

Results and Discussion

Overall Output Characteristics

The beam supply operated stably across the
complete output voltage and power envelope and
through the complete input voltage range.  Output
voltage ripple was found to be less than 5 percent for
all operating conditions.  Short circuit survivability
tests demonstrated stable operation during the fault
while the cycle-by-cycle current limit function of the
PWM circuit properly controlled the maximum input
current, by limiting the duty cycle of the MOSFETs. 
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Efficiency

Because the beam supply processes 66 to 81 percent
of the power across the 0.08 to 0.30 kW total thruster
power range, efficiency is critical in this design to
obtain reasonable overall efficiency.  At lower power
levels it is difficult to obtain high efficiency because
housekeeping power is a larger fraction of the total
power processed by the power supply.  For this
reason, core, conduction, and switching losses were
minimized and transients were controlled to avoid
the need for energy consuming snubbers. The result
was a beam supply efficiency comparable to that in
other existing ion propulsion power processors.
Figure 4 shows a plot of efficiency versus power at
minimum, nominal, and maximum input voltage
obtained from preliminary resistive load tests on the
beam supply.  The efficiency was above 0.91 at full
power (1200 VDC @ 0.204 ADC) and a nominal input
voltage of 28 VDC.  It decreased to 0.86 at minimum
power (640 VDC @ 0.088 ADC).  These reported
efficiencies include all housekeeping power
including PWM control, gate drives, telemetry, and
losses.

Table 2 shows how losses are distributed in the
power supply.  The components with the highest
losses in this design are the MOSFETs.  The sum of
their conduction and switching losses comprise
almost 48 percent of the total losses.

Some options that will be explored for possible
efficiency improvements in the beam supply include
the use of optimized magnetic cores to reduce core
losses, soft switching techniques to reduce switching
losses, and paralleling additional MOSFETs in the
power stage to reduce conduction losses.

Regulation

The line/load regulation specification for this design
was less or equal to 5 percent, as shown on Table 1.
Figures 5 and 6 show the results of the regulation
tests.  Line regulation was better than 2 percent for
any output voltage setpoint and load regulation was
better than 1.5 percent at nominal input voltage.

Conclusions

A breadboard beam supply for a low power ion
propulsion system was fabricated and tested.  This
power supply processes up to 0.24 kW of output
power by converting the input voltage of 28 ± 4 VDC
into a maximum of 1200 VDC.  A 20 KHz, full bridge
topology was used to minimize switching and core
losses and the mass of magnetic components.  A
total of four secondaries were connected in series to
reduce the voltage rating requirements on the

rectifier diodes.  Current-mode control was
implemented using a PWM circuit built from
discrete components.  Ferrite cores were used for the
major magnetic components to take advantage of its
weight and efficiency characteristics.

The beam supply was tested on a resistive load and
demonstrated load and line regulations better than 2
percent, output ripple less than 5 percent, and
efficiencies in between 0.86 and 0.91 over the power
range of 0.05 to 0.24 kW.  It also demonstrated
immunity to a short circuits.  The total component
and breadboard mass of this design was 0.53 and 1.1
kg, respectively.

The accelerator, discharge, neutralizer keeper, and
two heater supplies designs utilize commercially
available switching regulator ICs that incorporate all
the control and switching functions required by a
flyback or forward topology.  These will be integrated
with the beam supply, recycle, and command and
telemetry circuits into a complete PPU.
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Table 1.  Low power ion PPU output specifications

Beam Accelerator Discharge Neutraliz Heaters Thruster

Input Voltage (V) 24 - 32 24 - 32 24 - 32 24 - 32 24 - 32

Output Voltage 640 - 1200 -160 - -300 28 20 7

Output Current 0.088 - 0.204 0.3 - 1.0 mA 0.94 - 1.94 0.1 4.0

Output Power (W) 56 - 245 0.048 - 0.3 26.3 - 54.3 2 28

Total Power (W) 84.3 - 301.6

Regulation Mode Voltage Voltage Current Current Current

Output Ripple (%) ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5

Regulation (± %) ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5

Table 2.  Measured and calculated power losses at 
nominal input voltage and maximum output power

Power (W)

Conduction Losses - Transformer 1.5

                            Output 0.35

                            MOSFETs 8.5

                            Diodes 1.3

                            Input Inductor 0.5

 Core Losses - Transformer 1.9

                    Output Inductor 0.75

Switching Losses 2.5

Housekeeping 3.9

Other 1.9

Total 23.1
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Figure 2.  Low power ion breadboard beam supply
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